Building Batch Data Analytics Solutions on AWS

Kurskod GK7378

Building Batch Data Analytics Solutions on AWS

In this course, you will learn to build batch data analytics solutions using Amazon EMR, an enterprise-grade Apache Spark and Apache Hadoop managed service. You will learn how Amazon EMR integrates with open-source projects such as Apache Hive, Hue, and HBase, and with AWS services such as AWS Glue and AWS Lake Formation. 

Pris
10450 kr (exklusive moms)
Kursform
På plats eller LiveClass

Leveransformer kan variera beroende på ort och datum.

På plats innebär att kursen hålls i klassrum. Läs mer här.
LiveClass innebär att kursen hålls som en lärarledd interaktiv onlineutbildning. Läs mer här.

Längd
1 dag
Ort och datum
7 okt
Live Online
31 jan
Live Online

Boka utbildning

The course addresses data collection, ingestion, cataloging, storage, and processing components in the context of Spark and Hadoop. You will learn to use EMR Notebooks to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon EMR.


Target audience and prerequisites

This course is intended for:

  • Data platform engineers
  • Architects and operators who build and manage data analytics pipelines

We recommend that students of this course have a minimum of one-year experience managing open-source data frameworks such as Apache Spark or Apache Hadoop.

Detaljerad information


Module A: Overview of Data Analytics and the Data Pipeline
  • Data analytics use cases
  • Using the data pipeline for analytics
Module 1: Introduction to Amazon EMR
  • Using Amazon EMR in analytics solutions
  • Amazon EMR cluster architecture
  • Interactive Demo 1: Launching an Amazon EMR cluster
  • Cost management strategies
Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and Storage
  • Storage optimization with Amazon EMR
  • Data ingestion techniques
Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR
  • Apache Spark on Amazon EMR use cases
  • Why Apache Spark on Amazon EMR
  • Spark concepts
  • Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the
  • Spark shell
  • Transformation, processing, and analytics
  • Using notebooks with Amazon EMR
  • Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR

Module 4: Processing and Analyzing Batch Data with Amazon EMR and Apache Hive

  • Using Amazon EMR with Hive to process batch data
  • Transformation, processing, and analytics
  • Practice Lab 2: Batch data processing using Amazon EMR with Hive
  • Introduction to Apache HBase on Amazon EMR
Module 5: Serverless Data Processing
  • Serverless data processing, transformation, and analytics
  • Using AWS Glue with Amazon EMR workloads
  • Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions
Module 6: Security and Monitoring of Amazon EMR Clusters
  • Securing EMR clusters
  • Interactive Demo 3: Client-side encryption with EMRFS
  • Monitoring and troubleshooting Amazon EMR clusters
  • Demo: Reviewing Apache Spark cluster history
Module 7: Designing Batch Data Analytics Solutions
  • Batch data analytics use cases
  • Activity: Designing a batch data analytics workflow
Module B: Developing Modern Data Architectures on AWS
  • Modern data architectures

Få inspiration & nyheter från oss

Jag godkänner att Cornerstone skickar mig nyheter via e-post