Practical Data Science with Amazon SageMaker

Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML.
You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.
Target audience and prerequisites
This course is intended for Development Operations (DevOps) engineers and Application developers.
We recommend that attendees of this course have:
- Fundamental knowledge of the AWS Platform
- Entry-level knowledge of Python programming
- Entry-level knowledge of statistics
Detaljerad information
Introduction to Machine Learning
- Benefits of machine learning (ML)
- Types of ML approaches
- Framing the business problem
- Prediction quality
- Processes, roles, and responsibilities for ML projects
Preparing a Dataset
- Data analysis and preparation
- Data preparation tools
- Demonstration: Review Amazon SageMaker Studio and Notebooks
- Hands-On Lab: Data Preparation with SageMaker Data Wrangler
Training a Model
- Steps to train a model
- Choose an algorithm
- Train the model in Amazon SageMaker
- Hands-On Lab: Training a Model with Amazon SageMaker
- Amazon CodeWhisperer
- Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks
Evaluating and Tuning a Model
- Model evaluation
- Model tuning and hyperparameter optimization
- Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker
Deploying a Model
- Model deployment
- Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction
Operational Challenges
- Responsible ML
- ML team and MLOps
- Automation
- Monitoring
- Updating models (model testing and deployment)
Other Model-Building Tools
- Different tools for different skills and business needs
- No-code ML with Amazon SageMaker Canvas
- Demonstration: Overview of Amazon SageMaker Canvas
- Amazon SageMaker Studio Lab
- Demonstration: Overview of SageMaker Studio Lab
- (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint
Relaterat innehåll

AI förändrar spelplanen för både angripare och försvarare inom cybersäkerhet. För att hänga med krävs mer än traditionell kunskap – det krävs taktisk kompetens, praktisk färdighet och förståelse för hur AI kan förstärka både analys och attack.

Cornerstone Group och Microsoft presenterar AI Skills Fest – en unik möjlighet att delta i en inspirerande resa in i framtidens teknik! Under 50 dagar, med start den 8 april, har du chansen att fördjupa dig i en värld av artificiell intelligens (AI) tillsammans med Microsoft och ledande branschexperter.