Designing and Implementing a Data Science Solution on Azure

Kurskod MDP-100

Designing and Implementing a Data Science Solution on Azure

Den här utbildningen ger dig de kunskaper som behövs för att använda tjänsterna i Azure för att utveckla, träna, driftsätta och övervaka Machine Learning-lösningar. 

Pris
35450 kr (exklusive moms)
Längd
4 dagar
Alternativa betalsätt
Kompetenskort gäller på denna kurs

Många kurser kan även betalas med vårt kompetenskort alternativt utbildningsvouchers eller motsvarande credits från någon av våra teknikpartners. 

Läs mer om kompetenskort.
Läs mer om vouchers.

Ort och datum
11 sep
Live Online
20 nov
Live Online

Boka utbildning

Målgrupp och förkunskaper

Den här kursen vänder sig till Data Scientists och andra som arbetar med Machine Learning-modeller. Observera att kursen handlar om Azure, inte om generell Data Science. Dessa förkunskaper krävs:

  • Grundläggande kunskap om Azure.
  • Kunskap om programmering med Python
  • Förståelse för Machine Learning, inklusive hur man tränar modeller med bibliotek såsom Scikit-Learn, PyTorch, or Tensorflow.

För att alltid hålla en hög kvalitet på våra teknikkurser använder vi både engelsk- och svensktalande experter som kursledare.

 

Detaljerad information


Kursmaterialet är på engelska, med detta innehåll:

Module 1: Getting Started with Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

  • Introduction to Azure Machine Learning
  • Working with Azure Machine Learning
Module 2: Visual Tools for Machine Learning

This module introduces the Automated Machine Learning and Designer visual tools, which you can use to train, evaluate, and deploy machine learning models without writing any code.

  • Automated Machine Learning
  • Azure Machine Learning Designer
Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

  • Introduction to Experiments
  • Training and Registering Models
Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

  • Working with Datastores
  • Working with Datasets
Module 5: Working with Compute

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

  • Working with Environments
  • Working with Compute Targets
Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.

  • Introduction to Pipelines
  • Publishing and Running Pipelines
Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

  • Real-time Inferencing
  • Batch Inferencing
  • Continuous Integration and Delivery
Module 8: Training Optimal Models

By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

  • Hyperparameter Tuning
  • Automated Machine Learning
Module 9: Responsible Machine Learning

Data scientists have a duty to ensure they analyze data and train machine learning models responsibly; respecting individual privacy, mitigating bias, and ensuring transparency. This module explores some considerations and techniques for applying responsible machine learning principles.

  • Differential Privacy
  • Model Interpretability
  • Fairness
Module 10: Monitoring Models

After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Få inspiration & nyheter från oss

Jag godkänner att Cornerstone skickar mig nyheter via e-post