Data Engineering on Microsoft Azure

Kurskod MDP-203

Data Engineering on Microsoft Azure

Under den här kursen lär du dig hur du skapar lösningar för dataanalys med Microsoft Azure som plattform. Du lär dig de senaste teknikerna för att transformera och ladda data till ett data warehouse, samt hur du övervakar, optimerar prestanda och implementerar säkerhet.

Pris
35450 kr (exklusive moms)
Längd
4 dagar
Alternativa betalsätt
Kompetenskort gäller på denna kurs

Många kurser kan även betalas med vårt kompetenskort alternativt utbildningsvouchers eller motsvarande credits från någon av våra teknikpartners. 

Läs mer om kompetenskort.
Läs mer om vouchers.

Ort och datum
13 dec
Live Online
1 feb
Live Online

Boka utbildning

Tekniker som behandlas är bland andra Azure Synapse Analytics, Azure Databricks, Azure Data Factory, Apache Spark och Azure Stream Analytics.


Målgrupp och förkunskaper

Den här kursen vänder sig främst till dataarkitekter, dataanalytiker och BI-utvecklare, samt till utvecklare som bygger lösningar som använder data från Azures dataplattform.

Som deltagare behöver du praktisk erfarenhet av arbete med databaser samt grundläggande kunskaper om Azure motsvarande kurserna Microsoft Azure - Technical Fundamentals och 
Microsoft Azure Data Fundamentals.

För att alltid hålla en hög kvalitet på våra teknikkurser använder vi både engelsk- och svensktalande experter som kursledare.

Detaljerad information


Kursmaterialet är på engelska, med detta innehåll:

Explore compute and storage options for data engineering workloads

This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration.

  • Introduction to Azure Synapse Analytics
  • Describe Azure Databricks
  • Introduction to Azure Data Lake storage
  • Describe Delta Lake architecture
  • Work with data streams by using Azure Stream Analytics
  • Describe Delta Lake architecture
  • Describe Azure Stream Analytics
Design and implement the serving layer

This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory.

  • Design a multidimensional schema to optimize analytical workloads
  • Code-free transformation at scale with Azure Data Factory
  • Populate slowly changing dimensions in Azure Synapse Analytics pipelines
Data engineering considerations for source files

This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake.

  • Design a Modern Data Warehouse using Azure Synapse Analytics
  • Secure a data warehouse in Azure Synapse Analytics
Run interactive queries using Azure Synapse Analytics serverless SQL pools

In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs).

  • Explore Azure Synapse serverless SQL pools capabilities
  • Query data in the lake using Azure Synapse serverless SQL pools
  • Create metadata objects in Azure Synapse serverless SQL pools
  • Secure data and manage users in Azure Synapse serverless SQL pools
Explore, transform, and load data into the Data Warehouse using Apache Spark

This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool.

  • Understand big data engineering with Apache Spark in Azure Synapse Analytics
  • Ingest data with Apache Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
  • Integrate SQL and Apache Spark pools in Azure Synapse Analytics
Data exploration and transformation in Azure Databricks

This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data.

  • Describe Azure Databricks
  • Read and write data in Azure Databricks
  • Work with DataFrames in Azure Databricks
  • Work with DataFrames advanced methods in Azure Databricks
Ingest and load data into the data warehouse

This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion.

  • Use data loading best practices in Azure Synapse Analytics
  • Petabyte-scale ingestion with Azure Data Factory
Transform data with Azure Data Factory or Azure Synapse Pipelines

This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks.

  • Data integration with Azure Data Factory or Azure Synapse Pipelines
  • Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines
Orchestrate data movement and transformation in Azure Synapse Pipelines

In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines.

  • Orchestrate data movement and transformation in Azure Data Factory
Optimize query performance with dedicated SQL pools in Azure Synapse

In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance.

  • Optimize data warehouse query performance in Azure Synapse Analytics
  • Understand data warehouse developer features of Azure Synapse Analytics
Analyze and Optimize Data Warehouse Storage

In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations.

  • Analyze and optimize data warehouse storage in Azure Synapse Analytics
Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link

In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless.

  • Design hybrid transactional and analytical processing using Azure Synapse Analytics
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark pools
  • Query Azure Cosmos DB with serverless SQL pools
End-to-end security with Azure Synapse Analytics

In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools.

  • Secure a data warehouse in Azure Synapse Analytics
  • Configure and manage secrets in Azure Key Vault
  • Implement compliance controls for sensitive data
Real-time Stream Processing with Stream Analytics

In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput.

  • Enable reliable messaging for Big Data applications using Azure Event Hubs
  • Work with data streams by using Azure Stream Analytics
  • Ingest data streams with Azure Stream Analytics
Create a Stream Processing Solution with Event Hubs and Azure Databricks

In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams.

  • Process streaming data with Azure Databricks structured streaming
Build reports using Power BI integration with Azure Synapse Analytics

In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI.

  • Create reports with Power BI using its integration with Azure Synapse Analytics
Perform Integrated Machine Learning Processes in Azure Synapse Analytics

This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI.

  • Use the integrated machine learning process in Azure Synapse Analytics

Få inspiration & nyheter från oss

Jag godkänner att Cornerstone skickar mig nyheter via e-post